English

武石 直樹

博士(医工学)

准教授

京都工芸繊維大学

機械工学系

計算バイオメカニクス研究室

Email: ntakeishi_at_kit.ac.jp


研究について

コンピュータ・シミュレーション技術を用いて、1).生体内複雑流動(微小循環、気管内流動、血栓形成など)に関する力学原理の解明、2).医学・生物学的知見を工学的観点から再構築、3).各種疾患の新しい予測・診断・治療方法の創出に向けた基礎知見の提示を目指しています。



* denotes corresponding author

論文

    査読付国際雑誌

  1. Numerical-experimental estimation of the deformability of human red blood cells from rheometrical data .
    Naoki Takeishi, Tomohiro Nishiyama, Kodai Nagaishi, Takeshi Nashima, Masako Sugihara-Seki. Submitted.

  2. Title will be here.
    Sayaka Deguchi, Kaori Kosugi, Naoki Takeishi, Yukio Watanabe, Shiho Morimoto, Ryosuke Negoro, Fuki Yokoi, Hiroki Futatsusako, May Nakajima-Koyama, Mio Iwasaki, Takuya Yamamoto, Yoshiya Kawaguchi, Yu-suke Torisawa, Kazuo Takayama. Under revision.

  3. Phase changes of the flow rate in the vertebral artery caused by debranching thoracic endovascular aortic repair: effects of flow path and local vessel stiffness on vertebral arterial pulsation.
    Naoki Takeishi, Li Jialong, Naoto Yokoyama, Hisashi Tanaka, Takasumi Goto, Shigeo Wada. Under revision.

  4. Numerical analysis of viscoelasticity of two-dimensional fluid membranes under oscillatory tensile loadings.
    Naoki Takeishi, Masaya Santo, Naoto Yokoyama, Shigeo Wada. Under revision. https://doi.org/10.48550/arXiv.2210.11074.

  5. Viscoelasticity of suspension of red blood cells under oscillatory shear flow.
    Naoki Takeishi, Marco E. Rosti, Naoto Yokoyama, Luca Brandt. Phys. Fluids 2024, 36:041905, https://doi.org/10.1063/5.0196272.

  6. Enhanced axial migration of a deformable capsule in pulsatile channel flows.
    Naoki Takeishi, Marco E. Rosti. Phys. Rev. Fluids 2023, 8:L061101, https://doi.org/10.1103/PhysRevFluids.8.L061101.

  7. Inertial migration of red blood cells under a Newtonian fluid in a circular channel.
    Naoki Takeishi, Hiroshi Yamashita, Toshihiro Omori, Naoto Yokoyama, Shigeo Wada, Masako Sugihara-Seki. J. Fluid. Mech. 2022, 952:A35, https://doi.org/10.1017/jfm.2022.936.

  8. Computational fluid dynamics assessment of congenital tracheal stenosis.
    Keiichi Morita, Naoki Takeishi, Shigeo Wada, Tadashi Hatakeyama. Pediatr. Surg. Int. 2022, 38:1769-1776, https://doi.org/10.1007/s00383-022-05228-6.

  9. Fluid dynamic assessment of positive end-expiratory pressure in a tracheostomy tube connector during respiration.
    Shiori Kageyama, Naoki Takeishi, Hiroki Taenaka, Takeshi Yoshida, Shigeo Wada. Med. Biol. Eng. Comput. 2022, 60:2981-2993, https://doi.org/10.1007/s11517-022-02649-2.

  10. Airway performance in infants with congenital tracheal stenosis associated with unilateral pulmonary agenesis: effect of tracheal shape on energy flux.
    Shiori Kageyama, Naoki Takeishi, Naoki Harada, Kao Taniguchi, Keiichi Morita, Shigeo Wada. Med. Biol. Eng. Comput. 2022, 60:2335-2348, https://doi.org/10.1007/s11517-022-02601-4.

  11. Assessment of cardiac function using modified ejection fraction as an indicator of myocardial circumferential strain.
    Takaomi Morishita, Naoki Takeishi, Satoshi Ii, Shigeo Wada. J. Biomech. Sci. Eng. 2022, 17(2):22-00014, https://doi.org/10.1299/jbse.22-00014.

  12. Development of a mesoscopic framework spanning nanoscale protofibril dynamics to macro-scale fibrin clot formation.
    Naoki Takeishi, Taiki Shigematsu, Ryogo Enosaki, Shunichi Ishida, Satoshi Ii, Shigeo Wada. J. R. Soc. Interface. 2021, 18(184):20210554, https://doi.org/10.1098/rsif.2021.0554.

  13. Axial and nonaxial migration of red blood cells in a microtube.
    Naoki Takeishi, Hiroshi Yamashita, Toshihiro Omori, Naoto Yokoyama, Masako Sugihara-Seki. Micromachines. 2021, 12(10):1162, https://doi.org/10.3390/mi12101162.

  14. Cerebrospinal fluid flow driven by arterial pulsations in axisymmetric perivascular spaces: analogy with Taylor's swimming sheet.
    Naoto Yokoyama, Naoki Takeishi, Shigeo Wada. J. Theol. Biol. 2021, 523:110709, https://doi.org/10.1016/j.jtbi.2021.110709.

  15. Effects of left ventricular hypertrophy and myocardial stiffness on myocardial strain under preserved ejection fraction.
    Takaomi Morishita, Naoki Takeishi, Satoshi Ii, Shigeo Wada. Ann. Biomed. Eng. 2021, 49:1670–1687, https://doi.org/10.1007/s10439-020-02706-7.

  16. Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells.
    Naoki Takeishi, Marco E. Rosti, Yohsuke Imai, Shigeo Wada, Luca Brandt. J. Fluid. Mech. 2019, 872:818-848, https://doi.org/10.1017/jfm.2019.393.

  17. Capture event of platelets by bolus flow of red blood cells in capillaries.
    Naoki Takeishi, Yohsuke Imai, Shigeo Wada. J. Biomech. Sci. Eng. 2019, 14(3):18-00535, https://doi.org/10.1299/jbse.18-00535.

  18. Deformation of a red blood cell in a narrow rectangular microchannel.
    Naoki Takeishi, Hiroaki Ito, Makoto Kaneko, Shigeo Wada. Micromachines 2019, 10(3):199, https://doi.org/10.3390/mi10030199.

  19. Fluid dynamic assessment of tracheal flow in infants with congenital tracheal stenosis before and after surgery.
    Naoki Takeishi, Tomohiro Miki, Tomohito Otani, Satoshi Ii, Keiichi Morita, Shigeo Wada. Med. Biol. Eng. Comput. 2019, 57:837-847, https://doi.org/10.1007/s11517-018-1928-7.

  20. Capture of microparticles by bolus flow of red blood cells in capillaries.
    Naoki Takeishi, Yohsuke Imai. Sci. Rep. 2017, 7:5381, https://doi.org/10.1038/s41598-017-05924-7.

  21. Cell adhesion during bullet motion in capillaries.
    Naoki Takeishi, Yohsuke Imai, Shunichi Ishida, Toshihiro Omori, Roger D. Kamm, Takuji Ishikawa. Am. J. Physiol. Heart & Circ. Physiol. 2016, 311(2):H395-H403, https://doi.org/10.1152/ajpheart.00241.2016.

  22. Flow of a circulating tumor cell and red blood cells in microvessels.
    Naoki Takeishi, Yohsuke Imai, Takami Yamaguchi, Takuji Ishikawa. Phys. Rev. E 2015, 92(6):063011, https://doi.org/10.1103/PhysRevE.92.063011.

  23. Leukocyte margination at arteriole shear rate.
    Naoki Takeishi, Yohsuke Imai, Keita Nakaaki, Takami Yamaguchi, Takuji Ishikawa. Physiol. Rep. 2014, 2(6):e12037, https://doi.org/10.14814/phy2.12037.


  24. 査読付国内雑誌

  25. 多孔質体都市モデルによる局地気象現象の新しい数値予測.
    桑原不二朗, 武石直樹. 日本機械学会論文集B編 2011, 77(783):2181-2190, https://doi.org/10.1299/kikaib.77.2181.


    査読付国際会議論文

  1. How to measure cellular shear modulus inside a chip: detailed correspondence to the fluid-structure coupling analysis.
    Hiroaki Ito, Naoki Takeishi, Atsushi Kirimoto, Misato Chimura, Tomohito Ohtani, Yasushi Sakata, Mitsuhiro Horade, Toshio Takayama, Makoto Kaneko. 2019 IEEE 32nd International Conference on Micro Electro Mechanical System (Seoul, Korea) 2019, doi:10.1109/MEMSYS.2019.8870772.

  2. Development of a numerical model for micro-scale blood flow simulation using GPGPU.
    Naoki Takeishi, Yohsuke Imai, Takuji Ishikawa, Takami Yamaguchi. ASME 2012 Summer Bioengineering Conference (Fajardo, Puerto Rico, USA). 2013, Paper No:SBC2012-80028, pp.823-824, doi:10.1115/SBC2012-80028.


書籍

  1. 医用工学ハンドブック(第2編:医用工学の基礎知識 第3章:シミュレーション 4節:微小循環系のマルチスケールバイオメカニクス).
    武石直樹, 和田成生([編集代表] 佐久間一郎, [編集幹事] 秋吉一成, 津本浩平).
    2022年2月(ISBN-13:978-4860437350). NTS.

  2. 医療に活かす生体医工学 (第2章:生体力学シミュレーション).
    和田成生, 伊井仁志, 大谷智仁, 武石直樹.
    2020年11月(ISBN-13:978-4-339-07247-1). 日本生体医工学会[編], コロナ社.


総説・解説記事

  1. 【ポスト「京」重点課題2 -個別化・予防医療を支援する統合計算生命科学-】脳微小循環のダイナミクスと脳機能.
    武石直樹, 正本和人, 伊井仁志, 和田成生. News Letter, Vol.19, 1-7, 2019.

  2. 【特集:固液・気液二相流の対流・物質輸送】血球細胞と対流物質輸送.
    武石直樹, 伊井仁志, 和田成生. 伝熱2019年1月号, 58巻242号, 22-29, 2019.

  3. 【特集:注目研究in年会2018】赤血球希薄懸濁液と濃厚懸濁液のレオロジーを繋ぐ数値解析.
    武石直樹, Marco E. Rosti, 今井陽介, 和田成生, Luca Brandt. ながれ2018年12月号, 37巻6号, 516-519, 2018.

  4. 【海外混相流事情】血液レオロジーの数値解析に関する国際共同研究 (スウェーデン王立工科大学にて).
    武石直樹. 混相流2018年12月号, 32巻4号, 454-457, 2018.


取材

  1. 【次世代の担い手たち】生命活動を支える生体内の流れを流体力学の視点で捉えたい.
    武石直樹. 日経サイエンス2018年4月号, 1-2, 2018.

  2. Interview with JSPS fellows in the U.S.
    Naoki Takeishi. JSPS San Francisco Newsletter, Vol. 34, p.11, Jul. 2014.